
Appendix A
Embedded Interpretation of Domain-Specific Languages for Scientific Volume Visualization

1 VISLANG: LANGUAGE DESIGN

1.1 Data Types
The ViSlang language employs a dynamic type system (duck typ-
ing) to weakly enforce type compatibilities. When a value is as-
signed to a variable or when a function is called with a certain
set of arguments, types are automatically downcasted if possible.
Otherwise a run time error is generated. Variables and functions
are typed and type compatibility is enforced during run-time. This
guarantees the programmer that methods are only called with argu-
ments of compatible types. Therefore, a method does not need to
check types but can always assume that correct types are provided.
The special type var can be used when run time inference of the
actual type is desired.

The well known integral types boolean, string, integer, and float
are supported. Parameters of visualization algorithms are often se-
mantically constrained to a certain range. Therefore, the types inte-
ger and float are implemented as constrained types, and these con-
straints are enforced at run-time. The range of variables of these
types can be specified explicitly. An assignment to a constrained
variable outside its range will result in a run-time error presented to
the user. This ensures not only type safety but also range safety for
parameters that are semantically bound to a certain range.

The result of algorithms is often a collection of variables. ViS-
lang supports lists that are collections of elements of arbitrary types.
By returning a list, an algorithm can effectively return multiple re-
sults. ViSlang offers built-in types that are specifically targeting
volume visualization algorithms. Among them are the types vol-
ume, voxel, vset, vlabel, and image. A vset is a volume of booleans
(each voxel being true or false). A vlabel is a volume where each
voxel gets a numeric label. ViSlang natively supports these con-
cepts to accommodate the frequent use of binary masks and labeling
in algorithms. Internally, the vset and vlabel data structures are re-
sources that are stored using memory management on the graphics
card. This specialization of the more general (unmanaged) volume
type leads to an efficient storage layout of this common concept,
and the ability to quickly share these resources among different
software modules.

In an interpreted language environment, it is important to allow
quick exploration of algorithms and objects. Reflection can be used
to interactively query objects for types, variables, types of variables,
functions and signature of functions. Since scientists are usually
not fluent in object oriented programming, ViSlang does not allow
the definition of objects at run-time. Scoping is provided by inbuilt
objects and for extensions. This is important to facilitate differ-
ent name spaces and to reduce ambiguities between function and
variable names. Finally, ViSlang supports slangs, a specialization
of objects, that offer extended functionality. Slangs and objects in
general are registered with the current run-time environment of the
ViSlang language.

1.2 Objects and Slangs
An object typically encapsulates a set of variables and functions.
Each object has its own name-space and can register variables and
functions at compile- and run-time. A function call as well as

the access to variables of an object are done with the typical ’Ob-
ject.Identifier’ syntax. A slang additionally offers a programming
interface to the user via the ViSlang language. A parser and execu-
tion interface are implemented that are called by the main language
at run-time. The slang VolumeGenerator might for example imple-
ment a DSL that generates 3D volumes sampled from user provided
functions. Listing 1 shows an example of the VolumeGenerator
slang. Here it is used to sample the Marschner-Lobb test signal on
a 40x40x40 volumetric grid.

1 //generating a volume
2 volume v;
3 using VolumeGenerator:
4 x=[-1:1], y=[-1:1], z=[-1:1]
5 v[40,40,40](x,y,z) = 0.4*(1-sin(pi*z*0.5)+
6 0.25*(1+cos(12*pi*cos(0.5*pi*sqrt(xˆ2+yˆ2)))))

Listing 1: Calling the VolumeGenerator slang’s DSL interface with
the using keyword to generate a 3D dataset.

The programming interface of slangs goes beyond the capabili-
ties of most user interface elements. It allows the user to specify
certain aspects of the algorithm in a domain-specific language that
is tailored to the domain of the algorithm. To allow different lan-
guages for different domains it is not required for a slang to fol-
low any syntactic rules of the main language. The ViSlang parser
will forward parts of the program that are marked with the using
keyword to the specified slang. The slang’s syntax is completely
independent from the syntax of the main language, with the one ex-
ception that it must not (and cannot) re-purpose the keyword using.
With this technique it is possible to offer a lot of flexibility for the
implementation of slangs, hence making the overall language more
expressive.

1.3 Control Flow
The language supports a small set of instructions including variable
declaration and assignment, function declaration and calls, condi-
tionals, loops, as well as boolean and arithmetic expressions. Addi-
tionally, it supports syntactic constructs that are specialized to allow
the seamless integration into existing user interfaces, and the com-
bination of slangs in novel ways.

Linking: The linking (and unlinking) instruction allows to cou-
ple (and if desired decouple) two variables. In addition to an as-
signment, the linking is persistent and updates one variable when-
ever the value of the other variable changes (and vice versa). For
instance, Listing 2 shows how two variables are linked and unlinked
again. The assignment on line 4 will cause to also assign the new

1 integer a = 0; //decl. and assign. of a
2 integer b = 0; //decl. and assign. of b
3 a <=> b; //linking of a and b
4 b = 1; //assignment of 1 to b
5 a >=< b; //unlinking of a and b

Listing 2: Linking of two variables: After the assignment b=1 the
variable a will automatically be updated to the same value.

value of b to variable a. This construct is especially useful to link
variables of different objects that shall update each other.

Triggers: A trigger is assigned to a variable to execute a function
every time the value of the variable changes. This is useful to trigger
execution of functions or update of slangs that depend on values of

other variables. If a parameter of object A depends on the parameter
of object B, a trigger is assigned to a function call that updates the
parameter of object A and if necessary converts the parameters first.

A simple example that allows the user to specify the behavior of
the program is shown in Listing 3. Every time the user clicks on the
image the intersection of the viewing ray with the bounding box of
the volume is computed and used as a position for the axis aligned
slicing plane.

An object Intersector implements an algorithm that takes 2D im-
age coordinates imagePosition as input and calculates the intersec-
tion point between a ray and the bounding box of a given volume.
The intersection is stored as 3D coordinates in a variable called
volumePosition, where each co-ordinate is between zero and the
dimension of the volume. Another object Mouse with variable po-
sition stores the position of the mouse cursor on the image plane.
After the initial setup that ensures that the Intersector and Slicer ob-
jects use the same volume and camera settings, the user can write a
program that controls the position of the slicing plane with the co-
ordinates of the intersection of the ray with the bounding box of the
volume. In the example of Listing 3, it is (for the sake of simplic-

1 //function declaration
2 void setSlicePos(integer u, integer v){
3 //call intersection computation
4 list pos = Intersector.intersect(u, v);
5 //convert parameter range
6 float w = Slicer.volume.getWidth();
7 Slicer.position = pos.get(0) / w;
8 }
9 //assign trigger

10 Mouse.clickPosition ->
11 setSlicePos(Mouse.getX(), Mouse.getY());

Listing 3: Specifying the behavior of the program by triggering
function calls.

ity) assumed that the range of the Mouse.getX(), and Mouse.getY()
fit the range of the arguments of the function Intersector.intersect.
If this is not the case the range could be converted with a similar
setup. Lines 2 to 8 declare a function that calculates the conversion
between the different ranges of the variables and assigns the result
to the axis aligned slice position. Line 10 assigns a trigger to the
variable Mouse.clickPosition that executes the function setSlicePos.

Display Functionality: In ViSlang, each valid statement ends
with either a block of code (enclosed by curly brackets) or with one
of the terminal symbols ’:’ or ’;’. The semicolon symbol terminates
the statement. The colon symbol triggers a call to all registered dis-
play functions with compatible signature. The type of the result of
a statement is matched against all display functions. For instance
the result of an assignment is the assigned value. If called with the
colon symbol at the end of the statement the ViSlang system tries
to display the result. If the value is of type integer an inbuilt func-
tion will be called to display the integer number. If the value is of
type volume the ViSlang system finds all objects that have a method
with a matching signature that can display volume objects. If there
are more objects with a matching signature (for instance a volume
rendering and a slicing algorithm) the user can decide which ob-
jects are enabled for display. This implicit interface mechanism
is referred to as duck typing and extensively used by modern pro-
gramming languages like the go language.

2 GRAMMAR OF PRESENTED SLANGS

2.1 Volume Predicate Slang

We give a loose description of the grammar of predicates in List-
ing 4:

1 predicate pred-name [voxel-declaration]

2 (arg-list) { statement-list }

Listing 4: Volume predicate grammar

where the arg-list is a list of user specified arguments, and the
statement-list is a list of statements including declarations, assign-
ments, if statements, predicate calls, function calls, for loops, and
return statements. The voxel-declaration is specified as in Listing 5:

1 voxel voxel-name in volume-name

Listing 5: voxel-declaration grammar

Inside the statement-list variables from the user-specified argu-
ments and the voxel-declaration can be used. The voxel-declaration
is syntactically separated from the arg-list to emphasize its differ-
ent semantics. The predicate is evaluated in parallel for each voxel
of the volume defined in the voxel-declaration. The arguments of
the arg-list are constant for all voxels during execution. The voxel
defined in the voxel-declaration is the current voxel during evalua-
tion of the predicate. Therefore, the member variables (x, y, z, and
value) can be used in the statement-list and depend on the current
voxel’s values. Listing 6 shows a simple example of a user-defined
predicate:

1 predicate valueAbove[voxel vox in v](float x)
2 { return vox.value > x; }

Listing 6: Volume predicate example

When the user defines such a predicate, the slang registers a new
function with the signature vset valueAbove(float). This function
can subsequently be called by the user and is evaluated over vol-
ume v in the volume predicate slang. The evaluation is done on the
GPU. This allows the user to specify logical predicates that are effi-
ciently evaluated on the graphics hardware. There is no need for the
user to deal with low-level interfaces, and the semantics of parallel
execution.

2.2 Vlabel Visualization Slang
The vlabel visualization slang implements a declarative language
that takes data of type volume and a corresponding vlabel and per-
forms ray-casting. It allows the user to specify different visualiza-
tion styles and to assign particular labels to these styles. A style
is specified using a very concise syntax controlling the weights of
different colors, and other visual properties.

1 focus{
2 color:50%(1,1,0,1)50%label,
3 bordercolor:75%(0,0,0,1),
4 shading:100%}
5 context{
6 color:100%(1,1,1,1),
7 shading:25%}

Listing 7: Example of declaring two visualization styles with the vlabel
visualization slang.

For instance, Listing 7 shows the declaration of the two visualiza-
tion styles focus and context. The focus style is defined to use 50%
of the user-defined color (yellow in this case) and 50% of a ran-
domly generated color using the label id. The border color is set to
black and applied with 75% opacity. Shading is applied with 100%
opacity. The vlabel visualization slang parses these descriptions
and translates them to weights and colors that are made available to
the volume rendering algorithm.

2.3 Map-Reduce Slang
The grammar consists of the mapping function declaration and re-
duction function call. The grammar of the mapping function dec-
laration accepts a subset of the main language’s function declara-
tion. Statements like linking and unlinking as well as triggers are
not permitted in the mapping function’s body. In Listing 8, a short
description of the reduction function call grammar is shown.

1 reduction-operation voxel-declaration-list
2 function-identifier (arg-list)

Listing 8: Reduction call grammar

The reduction-operation is one of the keywords sum, min, max
or mul. The voxel-declaration-list is a comma-separated list of
voxel-declarations as defined for the volume predicate slang. The
function-identifier is the name of a mapping function, and the arg-
list is the list of arguments for the mapping function.

1 float3 coordinate(voxel v, integer id, integer m
){

2 float3 pos=m;
3 if(v.value==id){
4 pos.x=v.x; pos.y=v.y; pos.z=v.z;
5 }
6 return pos;
7 }
8

9 p1 = min[voxel v in vol] coordinate(v, 1, 4096);
10 p2 = max[voxel v in vol] coordinate(v, 1, 0);

Listing 9: Example of defining a mapping function and executing two
reduction operations.

With the Map-Reduce slang the user can quickly implement re-
duction operations that are executed on the GPU. Listing 9 shows an
example of a mapping function that returns the position of a voxel
if the voxel’s value equals id. Using the min and max operation,
this mapping function is used to calculate the bounding box of the
region with id=1 in this example.

REFERENCES

